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1. Introduction

NioGram is a Java tool for LL(k) syntax analysis of context free grammars. Such analysis can
be beneficial in the process of language and grammar design and for the process of hand-coded parser
implementation.

At  present  the  only  directly  supported  by  NioGram grammar  specification  language is  the
language of the parser generator ANTLR 4. The grammar model and analysis methods of NioGram
however are not dependent on a specific grammar specification language.  If  appropriate parsers to
NioGram  AST  (Abstract  Syntax  Tree)  are  implemented  then  NioGram  will  be  able  to  process
grammars specified in other languages such as e.g. JavaCC, YACC, Bison etc.

This manual assumes that the readers are familiar with the theory of grammar directed syntax
analysis. Readers who need to refresh or acquire knowledge on the subject will need to first look into
any of the many available compiler design books. The one most favored by the NioGram author is:

R.Wilhelm, H. Seidl, S.Hack : Compiler Design – Syntactic and Semantic Analysis, Springer 2013

Familiarity of the readers with the ANTLR 4 parser  generator is also beneficial since NioGram
can process grammars defined in the ANTLR 4 grammar specification language. A starting point for
access to relevant information is the site at http://www.antlr.org/. As a matter of convenience further in
this manual ANTLR 4 is referred as simply “ANTLR”.

2. Product Overview

2.1. Use Cases

2.1.1. ANTLR IDEs

In ANTLR IDEs the data  from NioGram analysis  can  be used to  signal  possible  grammar
inefficiencies and bugs. In the author's opinion this can be extremely helpful for ANTLR grammar
developers. 

2.1.2. Command Line Tool

NioGram  provides  a  command  line  tool  which  servers  the  same  purpose  as  the  potential
ANTLR IDE enhancements but in a less convenient way. 

http://www.antlr.org/


2.1.3. Hand-Coded Parser Development

NioGram grammar analysis generates data which is necessary for the implementation of  hand-
coded recursive descent parsers. This data is often from hard to practically impossible to collect by
hand. With NioGram it is always readily available.

2.2. ANTLR Grammar Syntax Analysis
ANTLR  implements  an  extremely  powerful  parsing  strategy.  It  can  deal  with  almost  any

grammar which lacks indirect left recursion. For developers this power is both a blessing and a curse. A
blessing  –  because  ANTLR  will  almost  always  do  the  job.  A curse  -  because  during  grammar
development ANTLR provides no diagnostics of possible grammar inefficiencies and errors (other than
purely syntactic).  NioGram mitigates  this  problem by providing tools  for traditional  LL(k) syntax
analysis of ANTLR grammars. The information computed in the process of NioGram analysis is as
follows:

• Nonterminal productivity 
• Nonterminal reachability 
• Nonterminal use 
• Nonterminal nullability 
• Grammar dependency graph 
• Simple cycles in the grammar dependency graph 
• Strongly connected components of the grammar depencency graph 
• Left-recursive cycles in the grammar 
• FirstK/FollowK sets 
• Linearized FirstK/FollowK sets
• First/Follow sets 
• Conflicts
• Terminal occurrence traces

Perhaps most  important  for  ANTLR grammar development  is  the information about  LL(k)
conflicts. Even though ANTLR will normally deal with those automatically, the grammar author will be
prompted to look into the correspondent rules for inefficiencies, ambiguities and errors. It is often not
trivial to identify the root causes of a conflict because they are “hidden behind” deep chains of rules.
Terminal occurrence traces (see 5.11. below) are instrumental in solving such problems.

2.3. Hand Coded Parser Development
Despite the existence of excellent parser generator tools,  hand-coded parsers are  still  being

developed even for A-list languages such as Java. More often than not though the analysis data needed
for hand coding is difficult to collect by hand. Unfortunately there appear to be no publicly available
tools for automatic computation of the needed data. NioGram fills this gap by providing the analysis



information described above. Furthermore, since NioGram supports the ANTLR grammar specification
language, hand-coded parsers can be validated against parsers generated by ANTLR. NioGram also
facilitates integration of hand-coded parsers with ANTLR lexers.

In a bit more detail :

First order of business in grammar development is to clean up the grammar of non-productive
nonterminals and left recursion. Doing this by hand is usually feasible but with NioGram analysis the
task is easier to accomplish and verify. Then the typical situation will be :

1. Most rules are LL(1) 
2. Some rules are LL(k) with small k > 1. 
3. A few rules may be not LL(k) for any k. 

If the situation is worse than this then the language or at least the grammar is either bloated or
poorly designed or both.  Besides  the subject  of language implementation,  LL(k) properties  of  the
grammar  are also important  from the standpoint  of  ease  of  comprehension of  the language by its
"speakers". Apart from the trivial cases of left recursion, features which are not LL(k) – decidable are
also difficult to comprehend and should be avoided.

Finding out which rules belong to which of the above categories is a crucially important task in
parser development. Doing this by hand though is far from trivial. NioGram on the other hand fully
automates the task and thus makes it reliable, cheap and error free.

Parsing of the LL(k) rules can be easily implemented by hand in a recursive descent parser if
the FirstK/FollowK sets are known. This is often a really big "IF" since the FirstK/FollowK sets for
higher level nonterminals tend to be quite sizable. Collecting the information by hand is tedious and
error  prone.  It  is  questionable whether  the task is  even practically  feasible  for  "serious" language
grammars. NioGram fully automates the process. Thus the feasibility is always guaranteed and a lot of
time for development and even more time for testing and debugging is saved.

The non-LL(k) rules (if any) have to be resolved by one or more of the following:

1. Left factoring
2. Context dependency
3. Temporary switch to a different parsing strategy 
4. Temporary switch to a different grammar
5. Backtracking
6. Ad hoc solutions

NioGram strives to facilitate the above solutions with analysis data artifacts.

At this time NioGram does not generate parsers or code of any other type. Its analysis data is
available to parsers and code generation tools either by embedded use or in the form of serialized AST
Java objects with embedded analysis data.



3. Project Overview
The NioGram project is hosted at GitHub. The sites of the project are:

• Home - https://niogram.github.io/niogram/
• API - https://niogram.github.io/niogram/apidocs/
• User Manual - https://niogram.github.io/niogram/NioGram_User_Manual.pdf
• Git Repository - https://github.com/niogram/niogram/

3.1. Project Structure
The NioGram project is Maven – based. It is a 2-tier project with 3 modules as follows:

• niogram-core

The core grammar analysis library.

• niogram-tool

The parser for ANTLR grammars and the command line tool.

• niogram-complete

A packaging  module  which  builds  a  distributive  of  the  command  line  tool  with  all  the
dependencies included.

3.2. Project Build
It is a standard Maven build:

mvn install

This generates in the target folders of the subprojects the project artifacts. The most directly
usable artifact is niogram-complete-x.y.z-SNAPSHOT.jar in the folder 
niogram-complete/target/ where “x.y.z” stays for the current version.

This is the NioGram command line tool packaged with  all dependencies. The tool can be 
invoked by:

java -jar niogram-complete-x.y.z-SNAPSHOT.jar

When invoked without arguments it prints out a self-explanatory usage message as follows:

Usage : niogram [options] <grammar-file>
        -q     quiet mode - do not print error messages
        -nm    parse the grammar in NioGram mode
        -sg    store the grammar serialized object
        -pd    print the parsing diagnostic information
        -pb    print the grammar basic information
        -psx   print the grammar AST in XML
        -psd   print the grammar AST in DOT
        -psr   print the grammar railroad diagrams in DOT
        -pfd   print the grammar full    dependency graph in DOT

https://github.com/niogram/niogram/


        -prd   print the grammar reduced dependency graph in DOT
        -ppx   print the grammar parse tree in XML
        -ppd   print the grammar parse tree in DOT
        -pff   print the firstX/followX sets
        -pffc  print the LL(k) conflict information
        -pct   print the conflict traces in DOT
        -ff    calculate the first   / follow   sets
        -ffk   calculate the firstK  / followK  sets
        -ffkl  calculate the firstKL / followKL sets
        -ffall calculate all firstX  / followX  sets
        -k=n   set the k parameter for the LL(k) analysis

The options of the tool are not mutually exclusive but cumulative – multiple options can be
specified simultaneously including multiple analysis options.

When the tool prints out various FirstX/FollowX sets it uses the following notation : lists are
delimited by brackets ([ … ]) and sets are delimited by braces ({ … }); list items are separated by
comas  and  set  items  are  separated  by  dots.  Let  us  note  here  (see  in  more  detail  below)  that
FirstK/FollowK sets are sets of lists of terminals, FirsKL/FollowKL “sets” are lists of sets of terminals
and First/Follow sets are sets of terminals. Here are some examples:

• a list : [A,B,C]
• a set : {A.B.C}
• a list of sets : [{A.B},{C.D}]
• a set of lists : {[A,B].[C,D]}

The “print conflict  traces” option means in more detail  to  print out  for each conflict  a dot
representation of the occurrence traces (see below) for one terminal participating in the conflict. These
traces are typically representative enough of the conflicts and printing out traces for all terminals can
result in excessive amount of data. So the tool is restricted to one trace per conflict. Custom client code
can compute traces for any/all terminals. 

The  project  artifacts  are  published  in  the  Maven  central  repository,  so  users  who  are  not
interested in building the tool themselves can download it from there.

3.3. Embedding in 3d Party Products
The  project  artifacts  are  published  in  the  Maven  central  repository.  The  group  id  is

“net.ognyanov.niogram”. The artifact IDs are:

• niogram-core
• niogram-tool
• niogram-complete

The analysis  tools  which would be the primary motivation for  embedding of  NioGram are
contained in the package  net.ognyanov.niogram.analysis. The ANTLR grammar parser is in
the class  net.ognyanov.niogram.parser.antlr4.Antlr4ToAstParser. Please refer to the
API documentation for the details of the invocation and function of these facilities.

Embedding of NioGram in ANTLR IDEs deserves some special attention. Normally an ANTLR
IDE has its own internal object model of the grammar. Typically a parse tree or a model close to it.
Startup  IDEs  can  use  the  NioGram ANTLR -  generated  parse  tree  as  (a  starting  point  for)  their



grammar  object  model.  Preexisting  IDEs  with  already  established  grammar  models  will  need  to
develop a translator from the IDE grammar object model to the NioGram AST grammar model. An
example  of  such  parser  is  the  class  net.ognyanov.NioGram.parser.Antlr4ToAstParser.  It
translates an ANLTR – generated parse tree into a NioGram AST tree. The source code of this class
should be studied by eventual AST parser implementators. One more class which is beneficial to get
acquainted with  is the main class of the command line tool –  net.ognanov.niogram.tool.Tool.
Finally : NioGram provides a small facility meant to support the interlinking of the two object models –
a publicly accessible (through a getter and a setter) field sourceContext in the grammar nodes which
is available for use by third party AST parsers.

3.4. AST Model
The  primary  structure  of  interest  for  NioGram  users  is  the  AST  (Abstract  Syntax  Tree)

generated by the AST parser and processed by the analysis  tookit.  It  holds all  substantial  (for the
analysis) information about the grammar in a structured form. The  model of the AST is described by
the following grammar :

tokens {Nonterminal, Terminal, TerminalRule}

grammar         : nonterminalRule* TerminalRule*;
nonterminalRule : alternative+;
alternative     : term*;
term            : Terminal | Nonterminal | block;
block           : alternative*;

Here the names match  up to  first  letter  capitalization  the  names of  the implementing Java
classes.  The type hierarchy of the implementing Java classes is as follows:

Grammar – related tools  tend to  have different  conventions  about  the representation of  the
empty string in grammar rules. Some use explicit epsilon symbol for that and others do not. NioGram
adheres to the second convention and defines no explicit epsilon terminal in its AST model. Empty
alternatives are literally empty rather than containing the epsilon terminal.

EBNF occurrence indicators have a representation in the AST only for AST blocks. Therefore if
other type of term (i.e. - terminal or nonterminal) has an EBNF occurrence indicator in the source text



of the grammar then it (the term) is embedded in a dedicated AST block of its own. If an occurrence
indicator in the source is one of ‘?’, ‘??’, ‘*’ or ‘*?’ then an empty alternative is inserted into the block.

For the sake of precision let us also note that even though the AST is viewed mostly as a tree,
technically it is a general directed graph. Rules contain references to all their instances on the right
hand side of productions and instances contain references to their correspondent rules.

For  the sake of  convenience  alternatives  and blocks  in  AST instances  are  assigned display
names by the following scheme:

• alternative number n of a rule or  block is assigned a display name <rule or block name>/an

• block number n in an enclosing alternative is assigned a display name<alternative name>.bn

For example  expression/a1.b2/a3.b4 could  be  a  name for  the  fourth  block in  the  third
alternative of the second block of the first alternative of the rule expression.

When grammar nodes are printed out in DOT format the names of the alternatives are shortened
to the last “an” in order to improve readability of the diagram. In other diagrams where the alternatives
are present their names are printed in full.

NioGram does not invest much code and performance into making the AST model fool-proof.
Client  code  has  the  technical  capability  to  corrupt  the  structure  and the  data  content  of  the  AST.
Analysis though is only guaranteed to work correctly (or to work at  all)  if the following rules are
observed: 

1. Client code never changes the structure of the AST. 
2. Client code invokes directly only the following data mutation methods: 

1. GrammarNode.setSourceContext() 
2. GrammarNode.setPayload() 
3. Grammar.setK() 
4. Grammar.setKL() 
5. Grammar.clearFlags() 
6. Grammar.clearFF() 
7. Grammar.clearFFK() 
8. Grammar.clearFFKL() 

4. Grammar Specification Topics

4.1. Grammar Types
NioGram focuses primarily on pure parser grammars. Combined grammars are supported for

grammar analysis too. Processing of pure lexer grammars is technically doable but pointless. 



4.2. Grammar Imports
ANTLR  supports  certain  type  of  grammar  inclusion  into  other  grammars.  This  facility  is

relatively rarely used at  all  and is  almost never  used to import parser (as opposed to lexer) rules.
NioGram is solely focused on parser rules and the price/performance ratio of grammar imports for it
appears to be very low. Therefore at this time NioGram does not support grammar imports.

4.3. Grammar Options
When parsing ANTLR grammars source text, NioGram supports the token vocabulary grammar

option and can import token vocabularies in ANTLR format. In addition to this NioGram recognized
the “k” option and if it is present, the parser sets its numeric value as both the K and KL analysis
parameters  in  the created Grammar object.  Other  options are  accepted and passed to  the client  of
NioGram but otherwise ignored.

4.4. Dot Expressions
ANRLR supports a feature called dot expressions which is not traditional to parser (as opposed

to lexer) grammars. NioGram does not support this feature and converts all such sets to instances of a
dedicated built-in terminal. Diagnostic information is provided whenever this happens.  With such  a
substitution further grammar analysis will not be necessarily entirely correct but it may still provide
useful suggestions about inefficient or/and incorrect rules.

4.5. Not Sets
ANRLR supports a feature called not sets which is not traditional to parser (as opposed to lexer)

grammars. NioGram does not support this feature and converts all such sets to instances of a dedicated
built-in terminal.  Diagnostic information is provided whenever this happens.   With such substitution
further  grammar  analysis  will  not  be  necessarily  entirely  correct  but  it  may  still  provide  useful
suggestions about inefficient or/and incorrect rules.

4.6. String Literals in Nonterminal Rules
The use of string literals in parser (as opposed to lexer) rules is not a good idea. It is sort of

convenient but can be a source of unexpected interference with the lexer rules. ANTLR though allows
this feature, so NioGram has to address it. NioGram first ensures that all occurrences of a literal are
treated as instances of one single terminal. Then in combined grammars and in parser grammars with
token imports it tries to identify a declared terminal which matches exactly the string.  If such terminal
is found then the literals are treated as its instances. If not then a new terminal is created and the literals
are treated as  instances of that terminal. In the second case correctness of the grammar analysis can not
be guaranteed since it is not really known how the lexer will treat these literals.



4.7. Non-greedy occurrence indicators
ANTLR allows for non-greedy occurrence indicators in parser grammars (??, *?, +?). NioGram

on the other hand treats all occurrence indicators as greedy. The impact on grammar analysis is difficult
to assess exhaustively but is definitely not positive. NioGram provides diagnostic information in such
cases.

5. Grammar Analysis Topics

5.1. Start Rule
NioGram always treats the first parser rule as the start rule of the grammar. It is a good practice 

in grammar design to always suffix the start rule productions with EOF but NioGram does not enforce 
this or amend the rule on its own.

5.2. Nonterminal Productivity
NioGram uses the standard definition of nonterminal productivity : a nonterminal is productive

if  a string consisting of terminals only can be derived from it.  Syntax analysis  in the presence of
nonproductive nonterminals is technically feasible but these nonterminals are an error which has to be
eliminated from the grammar. For more details on the implementation of this and the following three
topics  please  see  the  API  documentation  for  the  class  FlagsCalculator in  the  package
net.ognyanov.niogram.analysis.

5.3. Nonterminal Reachability
NioGram calculates reachability of nonterminal from the start rule in the dependency graph of

the  grammar.  Normally  all  nonterminals  with  the  possible  exception  of  the  start  rule  should  be
reachable. It may happen though that the developer wants to have multiple independent entry points to
the parser. The presence of non-reachable nonterminals does not affect the LL(k) analysis.

5.4. Nonterminal Use
NioGram defines use of nonterminals as occurrence on the right side of a parser rule. Normally

all nonterminals with the possible exception of the start one should be used this way. It may happen
though as noted above that the developer wants to have multiple independent entry points to the parser
and those are not otherwise used.  The presence of unused nonterminals does not affect the  LL(k)
analysis.

5.5. Nonterminal Nullability
NioGram uses  the  standard  definition  of  nullability  :  a  string  of  terminal  and  nonterminal

symbols is nullable if the empty string can be derived from it. Nullability of nonterminals is important
for making parsing decisions. For nullable terms the parser has to consider matches of the input with



both the FirstX and the FollowX sets. By FirstX and FollowX here we refer to any type of first/follow
set (see below).

5.6. Left-Recursive Cycles
The presence of left-recursive cycles inevitably  leads  to unresolvable LL(k) conflicts in the

grammar  and  prevents  straightforward  recursive  descent  implementation.  It  does  not  however
invalidate the LL(k) analysis of the grammar. NioGram supports discovery of all left-recursive cycles
in the grammar. For more details please see the API documentation of the class GraphAnalysis in the
package net.ognyanov.niogram.analysis.

In  EBNF  grammars  left  recursion  (which  is  otherwise  needed  for  the  expression  of  left
associativity) is replaced by iteration. The technique is working but not very efficient, so it is may be
further replaced by operator precedence parsing or other similar parsing algorithm for expressions.

5.7. FirstK/FollowK Sets
If a is a sequence of nonterminals and terminals then:

• FirstK(a) is the set of strings of length not bigger than K which can occur as a prefix in some
terminal-only string derived from a. 

• FollowK(a) is the set of strings of terminals of length not bigger than K which can occur as a
suffix to some string derived from a in any correct sentence of the language.

These sets are used in top-down parsing to choose the rule alternatives to be explored by the
parser.  NioGram  supports  computation  of  the  FirstK/FollowK  sets  for  any  specified  K.  The
computation however is rather expensive and in most real-life cases not really usable because of that.
More practical alternatives are described below.

For more details please see the API documentation of the class FirstKFollowKCalculator in
the package net.ognyanov.niogram.analysis.

5.8. Linearized FirstK/FollowK “Sets”
Calculation of FirstK and FollowK sets is a computationally expensive procedure. It is usually

more practical to use instead the so-called linearized “sets” which NioGram denotes as FirstKL and
FollowKL. These “sets” are actually strings of length k of sets of terminal symbols. The set at position i
contains  all  terminals  which  can  occur  at  position  i  in  a  string  belonging  to  the  correspondent
FirstK/FollowK set. The FirstKL/FollowKL “sets” have less prediction power than the FirstK/FollowK
sets but are much cheaper to compute.

For more details please see the API documentation of the class FirstKLFollowKLCalculator
in the package net.ognyanov.niogram.analysis.

5.9. First/Follow Sets
The calculation of (an approximation to) FirstK/FollowK sets can be made even faster than

FirstKL/FollowKL  if  we  restrict  ourselves  to  the  case  k=1.  This  approximation  is  denoted  as



First/Follow  and  is  supported  by  NioGram.  Its  prediction/decision  power  is  the  least  in  the
FirstX/FollowX family of sets  but its  computational  cost is  the lowest.  There is  a subtle technical
difference between FirstK/FollowK and FirstKL/FollowKL with k=1 on one hand and First/Follow on
the other hand. The latter never contain the empty string while the first may contain it.

For more details please see the API documentation of the class FirstFollowCalculator in the
package net.ognyanov.niogram.analysis.

5.10. Conflicts
LL(k)  conflicts occur when 2 or more nonterminal rule alternatives have intersecting FirstX

sets  and  the  parser  is  not  able  to  choose  between  these  alternatives  based  on  limited  amount  of
lookahead into the input. For nullable nonterminals there can also be FirstX/FollowX conflicts where
the FirstX set of one or more alternatives intersects with the FollowX set of the nonterminal.

NioGram calculates conflict information as part of the FirstX/FollowX calculation. Conflicts
are calculated for each alternative in rules and blocks. In case that a conflict of certain type does not
exist, NioGram computes the minimum amount of lookahead for which a conflict still does not exits so
that parsing decisions can always be done at the lowest possible cost. That can even be 0 if the rule has
a single alternative. For more details on the format of presentation of the conflict information please
see the API documentation for the interface net.ognyanov.niogram.ast.Multiplex.

Conflicts can sometimes be eliminated by the so-called “left factoring” which is the technique
of extracting common prefixes from two or more alternatives of a rule.  Consider  for example the
following grammar fragment:

a : x y | x z;

The common prefix ‘x’ of the two alternatives results in an LL(k) conflict. The conflict may not
be resolvable for any k if ‘x’ can generate terminal strings of unlimited length. This grammar fragment
however can be transformed into the following equivalent (from the standpoint of language generation)
:

a : x aRest;

aRest : y | z;

and the conflict disappears. The price paid for this kind of conflict elimination is that the transformed
grammar reflects less closely the semantics of the language. Problems of this kind can escalate if the
the grammar transformation has to be accomplished across several levels of nonterminal definitions.
Consider for example this grammar segment:

a  : x T1 | y T2  | z;

y  : y1 s1 | z1 ;

y1 : y2 s2 | z2;



y2 : x  s3 | z3;

There is a conflict between the first two alternatives for ‘a’ caused by the fact that ‘y’ can
generate a string starting with ‘x’. To eliminate the conflict we can incrementally eliminate from the
grammar ‘y2’, ‘y1’ and ‘y’ by replacing all their occurrences with equivalent blocks. The result will
be :

a  : x T1  | (((x  s3 | z3) s2 | z2) s1 | z1) T2   | z;

If we now eliminate the parenthesises, we will end up with several new alternatives for ‘a’ and
one of them will start with ‘x’. This new alternative and the old alternative starting with ‘x’ can then be
subjected to left-factoring. It is however questionable  whether such transformation is acceptable from
the standpoint of the language semantics implementation.

Finally let us note that  left factoring is not always feasible even in the presence of a common
prefix. Here is an example:

s : a | b;

a : L a R | X;

b : L b R | Y;

Here we can not factor  L* out of  a  and  b in order to apply left factoring because then the
grammar would not guarantee that the number  Rs is equal to the number of  Ls. This is a simplified
model of various bracketing constructs in programming languages where opening brackets can not be
factored out because then the grammar would not ensure proper bracket matching.

A more detailed discussion of the other methods for conflict resolution mentioned in 2.3. is out
of the scope of this document.

5.11. Terminal Occurrence Traces
When a terminal occurs in a conflict set then in order to eliminate or otherwise resolve the

conflict it is good to know where the terminal “came from”. The answer to the question where do the
terminals in FirstX/FollowX sets “come from” can be of interest in other cases too. Therefore NioGram
supports computation of terminal occurrence traces. We will skip here the formal definition based on
sequences of productions (which is rather straightforward) and will present instead an example. Let us
consider the following grammar :

grammar traces;
tokens {A, B, C}
a : b | c ;
b : B | A b;
c : C | A c;

The terminal ‘A’ occurs at position 0 in the FirstX sets of the nonterminal ‘a’. It also participates
in a LL(1) conflict between the two alternatives for ‘a’. There are two paths through the AST which
lead from the occurrence of ‘A’ in the FirstX set of ‘a’ to the possible sources of that occurrence. The



endpoints of the paths are the occurrences of ‘A’ in the rules for ‘b’ and ‘c’. And this is how the trace
diagram looks:

 Traces are always trees (possibly degenerated to lists) and the leaf nodes are always instances
of the traced terminal. All nodes in the trace either contain the traced terminal in their FirstX set or are
nullable (or both).

In order to demonstrate a meaningful trace based on FollowX sets, let us consider an example
of the classic “dangling ELSE” problem:

grammar ffconflict;
statement:

IF LPAREN expression RPAREN 
THEN statement 
(ELSE statement | )
| expression SEMI
;

expression:
expression PLUS expression
| LPAREN expression RPAREN
| INTEGER
;

IF : 'if';
THEN : 'then';
ELSE : 'else';
PLUS : '+';
LPAREN : '(';
RPAREN : ')';
SEMI : ';';
INTEGER : '0' | [1-9] [0-9]*;



The problem with this grammar is its ambiguity. In statements like e.g. :
if(1) then if(2) then 3; else 4;

the else clause can be associated with either of the if clauses. In the LL(k) analysis this results in a
FitstX/FollowX conflict on  ELSE for the block statement/a1.b1. The FirstX trace of the conflict is:

Here the block has a dashed border in order to signal that it is nullable.

The followX trace for the conflict is:



Here the blue edges signify transitions based on the presence of ELSE in the FollowX set of the
node and black edges signify transitions based on the presence of ELSE in the FirstX set of the node.
The dashed blue edge signals the transition between the two. In FollowX traces the final segments at
the bottom of the tree branches (and only these segments) are always FirstX – based. The sketchy
explanation of this is that terminals occur in the follow set of  a term in a production when they are in
the first set of the suffix to the term in  that production.

Terminals can in principle be traced for occurrence at any position in the a FirstX/FollowX set.
Traces for positions beyond 0 though tend to be difficult to comprehend. For example - because of
“interactions” between repeatable and nullable terms. Therefore NioGram restricts trace computation to
position 0 in the conflict sets.

Note that whenever NioGram computes FirstX/FollowX sets for grammar rules, it also stores in
the root Grammar node the unions of these sets. Therefore it is possible to compute grammar-wide
terminal occurrence traces.

For  more  details  please  see  the  API  documentation  of  the  classes  TerminalTrace  and
TerminalTraceFactory in the package net.ognyanov.niogram.analysis.

6. Hand-Coded Parser Support
NioGram is available for embedding in code generation tools related to language recognition

and implementation. At the same time even though NioGram itself does not generate code, the results
of its analysis can be used directly. The command line tool has an option to record a serialized version
of the analyzed grammar. This serialized object can later be deserialized  and used in a hand-coded
parser. Deserialized grammar objects can also be used by tools which generate more convenient and
efficient (than the Grammar object itself) analysis data artifacts for use in hand-coded parsers.

The command line tool records the serialized Grammar object in the folder where the grammar
source file resides. The name is the same as the name of the grammar file except for the extension
which is “.ser” instead of “.g4”.

The process of serialization/deserialization has two caveats as follows:
The IDs of the grammar nodes are only unique within a single running Java virtual machine.

This may cause problems e.g. if nodes from different JVMs are mixed in the same container because
the equality and hashing of nodes are based for the sake of efficiency on the  IDs only. It is (so far) the
belief of the NioGram author that resolving these issues by more rigorous equality/hashing or by truly
globally unique IDs would be an overkill.

By design decision the content of the source context and payload fields of the grammar nodes is
not retained in the serialization/deserialization process.

7. Grammar Visualization
NioGram provides DOT format printouts of the grammar parse tree,  the grammar AST, the

grammar dependency graphs, the railroad diagrams of all rules and of the terminal occurrence traces.
The parse tree and the AST can also be printed out with more details in XML format. For more details
please see the API documentation for the following classes :

• net.ognyanov.niogram.ast.GrammarNode

• net.ognyanov.niogram.ast.Grammar



• net.ognyanov.niogram.analysis.GraphAnalysis

• net.ognyanov.niogram.analysis.TerminalTrace

• net.ognyanov.niogram.parser.antlr4.Antlr4ToAstParser

For illustration we present below a grammar dependency graph, a parse tree diagram, an AST
diagram and railroad diagrams for the second grammar from 5.11. Some of the diagrams are not very
readable when scaled down to fit in this document but nevertheless they do give an idea of the format.

grammar ffconflict;
statement:

IF LPAREN expression RPAREN 
THEN statement 
(ELSE statement | )
| expression SEMI
;

expression:
expression PLUS expression
| LPAREN expression RPAREN
| INTEGER
;

IF : 'if';
THEN : 'then';
ELSE : 'else';
PLUS : '+';
LPAREN : '(';
RPAREN : ')';
SEMI : ';';
INTEGER : '0' | [1-9] [0-9]*;

Dependency Diagram



Parse Tree Diagram

AST Diagram



Railroad Diagrams
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